Technical Definitions:

Coupling:
The difference in power at the coupled port relative to the power at the input port or output port. Coupling values and frequency flatness listed for couplers will show the minimum and maximum coupled levels at any given frequency over the specified frequency band.

Insertion Loss (True):
The difference of the measured power at the output of a coupler, relative to the power at the input port with all other ports terminated into 50 ohms. The measurement includes any power routed or lost to the coupled port.

Insertion Loss (Excluding Coupled Power):
This is for reference only, a value which is internal power dissipation of the device not including the power routed to other ports.

Isolation (Divider/Combiners & Hybrids):
Amount of power reduction measured at any port in relation to the power level at any other output port with all other ports terminated into 50 ohms.

Directivity:
The difference of coupled power after applying power through the coupler in both directions with all other ports terminated into 50 Ohms.

Frequency Flatness:
The absolute maximum difference in the coupling level measured over the specified frequency band.

Amplitude Balance:
The difference of output power levels at any given frequency in the specified frequency band.

Phase Balance:
The difference of output port phase levels at any given frequency in the specified frequency band.
Technical Definitions:

Amplitude Balance:
The difference of output power levels at any given frequency in the specified frequency band.

Average Power:
The maximum average or CW power, which may be applied at the input port(s) without resulting in damage to the device.

Peak Power:
The maximum peak power which may be applied at the input port(s) without resulting in damage to the device. The pulse width and duty cycle determine the Peak Power level and should not exceed the calculated average power of the device specification.

Bi-Directional Coupler:
Another name for a 4-port coupler; that is, a single coupler having no internal termination. It is intended to allow forward and reflected signals to be sampled simultaneously.

Dual Directional Coupler:
The combination of two 3-port couplers having their main lines cascaded, and their internally terminated ports facing each other at the interface between the couplers. This provides bi-directional coupler action, but with independent use of the coupled ports: A mismatched load applied to either of them will not affect the other. The combination of two 3-port couplers having their main lines cascaded, and their internally terminated ports facing each other at the interface between the couplers. This provides bi-directional coupler action, but with independent use of the coupled ports. A mismatched load applied to either of them will not affect the other.

VSWR:
The standing-wave ratio at any port of a coupler is specified for the case of reflectionless terminations at all other ports. As with any device, VSWR is a measure of the quality of match terminations at all other ports. As with any device, VSWR is a measure of the quality of match relative to a given characteristic impedance.